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INFIUENCE OF FUSELAGE AND CANARD-TYFE CONTROIL SURFACE '
ON THE FLOW FIELD ADJACENT TO A REARWARD FUSELAGE
STATION AT A MACH NUMBER
OF 2.0 - DATA PRESENTATION
By Evan A. Fredenburgh, Leonard J. Obery

and John F. Mello

SUMMARY

Measurements of the local total pressures and Plow-deflection
angles In the flow fleld of a body and a cansrd-type control-surface
combination were made abt a rearward fuselage station (69 percent of the
body length downstresm of the nose) which corresponded to a possible
englne lnlet location. Data are presented for a Mach number of 2. o,
body engles of attack from 0° to 6°, and control-surfsace deflection

)
angles from O° to 9-2]-' .

The survey showed large tobtal-pressure losses 1in the wake of the
control surface and a pronounced shift in the clrcumferentiel distri-
bution of the boundary-layer air about the fuselage due to deflection
of the control surface. On a canard-type supersonic ailrcraft configur-
ation, a rearward locatlon of an englne inlet, either on the body sur-
face or in the stream adjacent to the body, must therefore be carefully
selected for optimum engine performance.

INTRODUCTION

Disturbances originated by the longitudlnal control surface in a
canard or "tall-flrst" type alrcraft are propagated downstream and
appesr as losses in total pressure in the control-surface wake and flow
angulsrity because of the tralling vortices. If an alr inlet i1s located
in the disturbed region, the efficlency of the propulsion system may be

Impaired.

An experimental investlgatlion to determine the influence of a fuse~

lage and canard-type control-surface cambination on the flow fleld
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approximately 10 mean geometrlic chords downstream of the control surface
was conducted in the NACA Lewis 8- by 8-foot supersonic wind tunnel.

Downwash and sidewash angles and total pressures in the flow fleld were
meesured in the iInvestigation. Data are presented for a Mach number of

2.0, body angles oflaxtack from 0° to 6% and control-surface deflection
angles from 0° to 95 The Reynolds number in this investlgation was

approximately 2.7><lO6 based on the mean geonetrlic chord of the control
surface. :

SYMBOLS

The followlng symbols are used 1in this reporb:

P total pressure
X distance from fuselage nose ) o
(o control-surface deflectlon angle mesassured from body center line

and positive when tralllng edge 1s down

Subscrlipts :
0 free stream

1 survey station

APPARATUS AND PROCEDURE

A sketch of the model and supporting strut 1ls shown in figure 1. A
body of revolutlon having a maximum dlemeter of 9 Inches and a length-
dlameter ratlo of 12 was comblned wlth a control surface having a plan
area of 135 squearé Inches, an aspect ratlo of 3.0, a taper ratio of 0.5,
and an ungwept 50-percent chord line. The alrfoll sectlon was a double
circular arc, 5-percent thick except near the root where the thickness

ratio was gradually increased to 8 percent for strength.

The all-movable control surface was hinged about its 50-percent
chord line and was remotely operated. The nose portion of the body
ed Jacent to the forward half of the control_surface was flxed to and

deflected wlth the surface.

A
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A sketch of the gurvey apparatus is shown in figure 2. The survey
station, 74.1 inches downstream of the nose of the body, was 9.8 mean
geometric chord lengths downstream of the 50-percent chord line of the
control surface. The wedges 1n the survey apparatus were used to measure
local Mach numbers and flow deflection angles; two-dimensional flow
theory was assumed for the calculablons. The local Mach numbers were
usad to correct the pressures msasured with the survey pitot tubes for
normel shock losses, Duplicate runs were made with the survey apparabus

‘'shifted spanwise, as shown in figure 2, to provide surveys every 2% Inches.

The wedge survey rakes were canted downward 5° with respect to the body
centerline so that the wedges, which are limited in thelr useful angle of
attack range, would operate from -5° o0 5° as the body angle of gttack was
varied from O° to 10°. The downwash and sidewash components of the flow
deflection were messured with the horizontal and vertical wedges, res-
pectively, on opposite sides of the body. The total-pressure ratios
obtained in the manner described have an estimated accuracy of +0.02 at
polnts of measurement. The maximm error 1n the downwash and sldewash
measurements. is estimated to be 0.5°.

Four boundary-layer rakes were used in the aurvey atb 450, 90°, 135°,
and 180° from the top of the body. As the model support strut prevented
placing a reke on ‘the top of the body at the survey plane, the boundary-
layer survey was completed with the lower rekes by running the body and
conbrol surface at negative engles. The- pressures measured with the
boundary-layer rekes were corrected for shock losses by assumlng that
the statlc pressure varied linearly from the msasured value at the base
of the rake to free-gstream statlic pressure at the tip. This assumption
resulted in the most reasonable boundary-layer proflles for the body
alone and consequently was used for all model condlitlons. Although
some error maey be ilnvolved, the indicated effects of the control-surface
deflection on the boundary layer are considered quallitatively wvalid.

Photographs of the model and survey apparatus are shown in figures 3
and 4.

PRESENTATION OF DATA

The results of the investigation are presented in figures S5 to 7
for the body alone and in figures 8 to 10 for the body and conbtrol sur-
Pace. The date are presented as contours of the ratio of the local total
pressure Pl to the free-stream total pressure PO, and as vecltor plqts

of the local flow-deflection angles wlth respect to the free-stroam
divection. In these vector plots, the length of a vector 1is proportional
to the megnitude of the engle between the local flow and the free-stream
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direction. The horizontal and vertical components of the vector repre-
gent, respectively, the sidewash and downwash angles. The semiclrcles

on the plots represent the fuselage cross sectlon at the survey plane and
the dashed straight line in figures 8 to 10 represents the trailing edge of
the control surface projected to the survey plane in the free-stream direc-
tlon. For cases where one component of the flow deflection was not obtained,
the meesured componeént 1s shown as a dashed line on the vector plots.,

Mesasurements obtalned for the body without thse control surface sb
0° eangle of atback are presented in figure 5. Although some irregularity
is apparent in the flow deflection angles shown because of errors in N
alining the wedges, & downwash 1s evident near the body. This downwash
is due to the model support strut, which caused a high static-pressure-
field near the top of the body. This effect 1s also evidenced in fig-
ure 8(a) as a slight downward dlsplacement of the wake from the comtrol
surfece. TIn order.to minimize the effect of the support strut on the
flow angularity and to eliminate wedge alinement errors, the deflectlon
angles measured for the body alome abt 0° angle of attack (data of fig-
ure 5) were subtracted from the measured values for all other model con-
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ditions presented. . p._a;_'

The effect of the model support strut on the total pressures in the
survey field was negligible. The Malh number distributlion was Iinfluenced
conslderably by the strut, however, and is not presented as it 1s not
generally representative of the flow fleld. -

The model configuration was also investlgated at Mach number 1.8;
however, the results were generally the seme as those shown for a Mach
number of 2.0 and no date are presented. The losses 1n total pressure
were slightly lower at Mach number 1.8 than at 2.0. .

CONCLUDING REMARKS

The results of the Investigatlon indicate that regions of large
total-pressure loss and flow angularity exist as far rearward as 10 mean
goometric chord lengths downstream of a canard-type control surface.
Furthermore, when the conbrol surface provides 1ift, the circumferential
distribution of the boundary-layer air around the fuselage is distorted
from the pattern -measured for the body without a comtrol surface. There-
fore, care must be exercised in locating fuselaege inlets or engine .
nacelles downstream of a canard-type control surface i1f serious penal-
ties in performance sre to be avoided. : CoT

Lewls Flight Propulsion. Leboratory -
Netlional Advisory Commlttee for Aeronautics
Cleveland, Ohlo,
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